
New Foundations is consistent:
an exposition and formal verification

Sky Wilshaw

April 24, 2024

Abstract
We give a self-contained account of a version of Holmes’ proof [6] that Quine’s set theory New

Foundations [8] is consistent relative to the metatheory ZFC. We have formalised this proof in the
Lean interactive theorem prover [11], and this paper is a ‘deformalisation’ of that work. We discuss
the challenges of formalising new and untestedmathematics in an interactive theorem prover, and
how the process of completing the formalisation has influenced our presentation of the proof.

Contents
1 Overview 1

2 The Lean interactive theorem prover 2
2.1 Lean and its type theory . 2
2.2 Trusting Lean . 3

3 The theories at issue 3
3.1 The simple theory of types . 3
3.2 New Foundations . 4
3.3 Tangled type theory . 4
3.4 Finitely axiomatising tangled type theory . 6

4 The supertype structure 7
4.1 Model parameters . 7
4.2 Atoms, litters, and near-litters . 8
4.3 Higher type structure . 9

1 Overview
In §2, we will briefly discuss Lean [7], the interactive theorem prover in which our result is for-
malised. We will also explain why our formalisation in [11] can be trusted as evidence that Holmes’
proof in [6] is correct, without needing to understand the underlying details of the proof. We have
made frequent use of the community-made repository mathlib [2], which encodes standard math-
ematical definitions and theorems in Lean; without this, we would have needed to write our own
libraries for (for example) abstract algebra and cardinal and ordinal arithmetic.

1

Lean is based on a version of the calculus of constructions, which is a dependent type theory. In order
to authentically present the formalised proof, the mathematics of this paper will take place in this
type theory, or some suitable variant of it. Wewill rarelymake note of this choice, and readers are not
expected to be familiar with such type theories. However, this will be relevant for some discussion
sections, as some parts of the proof were made significantly harder by the fact that we are working
in a type theory.

In §3, wewill establish themathematical context for the proofwewill present. In particular, our proof
will not directly show the consistency of NF; instead, we will construct a model of a related theory
known as tangled type theory, or TTT. This is the result which has been formally verified: there is a
structure that satisfies a particular axiomatisation of TTT which we will discuss in §3. The expected
conclusion that NF is consistent then follows from the fact that NF and TTT are equiconsistent [5].

We will now outline our general strategy for the construction of a model of tangled type theory. As
we will outline in §3.3, TTT is a many-sorted theory with types indexed by a limit ordinal 𝜆. In order
to impose symmetry conditions on our structure, wewill add an additional level of objects below type
zero. These will not be a part of the final model we construct. This base type will be comprised of ob-
jects called atoms (although they are not atoms in the traditional model-theoretic sense). Alongside
the construction of the types of our model, we will also construct a group of permutations of each
type, called the allowable permutations. Such permutations will preserve the structure of the model
in a strong sense; for instance, they preserve membership.

The construction of a given type can only be done under certain hypotheses on the construction of
lower types. The most restrictive condition that we will need to satisfy is a bound on the size of each
type. In order to do this, we will need to show that there are a lot of allowable permutations. The
main technical lemma establishing this, called the freedom of action theorem, roughly states that a
partial function that locally behaves like an allowable permutation can be extended to an allowable
permutation. Much of this paper will be allocated to proving the freedom of action theorem and its
various corollaries, and it will be outlined in more detail when we are in a position to prove it.

We can then finish themain induction to build the entiremodel out of the types we have constructed.
This step, while invisible to a human reader in set theory, takes substantial effort to formally establish
in a dependent type theory. It then remains to show that this is a model of TTT as desired, or more
precisely, a model of a particular finite axiomatisation.

[Finish the introduction…]

2 The Lean interactive theorem prover
2.1 Lean and its type theory
Lean [7] is a functional programming language and interactive theoremprover. As indicated in §1, its
underlying logic is a dependent type theory based on the calculus of constructions. Carneiro proved
in [1] that Lean’s type theory is consistent relative to

ZFC + {there are 𝑛 inaccessible cardinals ∣ 𝑛 < 𝜔}

These inaccessible cardinals are needed to support Lean’s hierarchy of type universes. Higher uni-
verses are commonly used whenever they are convenient, for example in definitions of cardinals and
ordinals. However, these uses are not strictly necessary for our purposes, and the entire proof can be
carried out in plain ZFC, as shown by [6] and this paper.

2

Proofs in Lean may be written in its tactic mode, which tracks hypotheses and goals, and enables the
use of tactics to update these hypotheses and goals according to logical rules. There are a large variety
of tactics to perform different tasks, such as simplification (simp), rewriting of subexpressions (rw),
structural induction (induction), and so on. These tactics output a proof term, which is a term in
Lean’s underlying type theory. The type of this term corresponds to the proposition that we intend
to prove under the Curry–Howard correspondence. The proof term is then passed to Lean’s kernel,
which contains a type-checking algorithm. If the proof term generated by a tactic has the correct
type, the kernel accepts the proof.

2.2 Trusting Lean
Lean is a large project, but one need only trust its kernel to ensure that accepted proofs are correct.
If a tactic were to output an incorrect proof term, then the kernel would have the opportunity to find
this mistake before the proof were to be accepted.

It is important to note that the kernel has no way of knowing whether a formal definition written
in Lean matches the familiar mathematical definition. Any definitions used in a theorem statement
must be manually checked by a human reader; all that Lean guarantees is that the conclusion is
correct as written in its own type theory. For example, if verifying a formalised proof of Fermat’s last
theorem, one should manually check the definitions of natural numbers, addition, exponentiation,
and so on, but need not check (for example) definitions and results about elliptic curves.

All of the proofs in this paper (except in §3, uponwhich no other results depend) are verified by Lean.
To help with the verification step, ourmain result can be found in the Result.lean file (source, doc-
umentation). Each definition and result is taggedwith a hyperlink (such as ∃∀) to the documentation
generated from the corresponding Lean code.

3 The theories at issue
In 1937, Quine introduced New Foundations (NF) [8], a set theory with a very small collection of
axioms. To give a proper exposition of the theory that we intend to prove consistent, we will first
make a digression to introduce the related theory TST, as explained by Holmes in [6]. We will then
describe the theory TTT, which we will use to prove our theorem.

3.1 The simple theory of types
The simple theory of types (known as théorie simple des types or TST) is a first order set theory with
several sorts, indexed by the nonnegative integers. Each sort, called a type, is comprised of sets of that
type; each variable 𝑥 has a nonnegative integer 𝗍𝗒𝗉𝖾(‘𝑥’) which denotes the type it belongs to. For
convenience, we may write 𝑥𝑛 to denote a variable 𝑥 with type 𝑛.
The primitive predicates of this theory are equality and membership. An equality ‘𝑥 = 𝑦’ is a well-
formed formula precisely when 𝗍𝗒𝗉𝖾(‘𝑥’) = 𝗍𝗒𝗉𝖾(‘𝑦’), and similarly a membership formula ‘𝑥 ∈ 𝑦’ is
well-formed precisely when 𝗍𝗒𝗉𝖾(‘𝑥’) + 1 = 𝗍𝗒𝗉𝖾(‘𝑦’).
The axioms of this theory are extensionality

∀𝑥𝑛+1. ∀𝑦𝑛+1. (∀𝑧𝑛. 𝑧𝑛 ∈ 𝑥𝑛+1 ↔ 𝑧𝑛 ∈ 𝑦𝑛+1) → 𝑥𝑛+1 = 𝑦𝑛+1

and comprehension
∃𝑥𝑛+1. ∀𝑦𝑛. (𝑦𝑛 ∈ 𝑥𝑛+1 ↔ 𝜑(𝑦𝑛))

3

https://github.com/leanprover-community/con-nf/blob/main/ConNF/Model/Result.lean
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.ext

where 𝜑 is any well-formed formula, possibly with parameters.
Remarks 3.1.

(i) These are both axiom schemes, instantiated for all type levels 𝑛, and (in the latter case) for all
well-formed formulae 𝜑.

(ii) The inhabitants of type 0, called individuals, cannot be examined using these axioms.

(iii) By comprehension, there is a set at each nonzero type that contains all sets of the previous type.
Russell-style paradoxes are avoided as formulae of the form 𝑥𝑛 ∈ 𝑥𝑛 are ill-formed.

3.2 New Foundations
NewFoundations is a one-sorted first-order theory based on TST. Its primitive propositions are equal-
ity and membership. There are no well-formedness constraints on these primitive propositions.

Its axioms are precisely the axioms of TST with all type annotations erased. That is, it has an axiom
of extensionality

∀𝑥. ∀𝑦. (∀𝑧. 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦
and an axiom scheme of comprehension

∃𝑥. ∀𝑦. (𝑦 ∈ 𝑥 ↔ 𝜑(𝑦))

the latter ofwhich is defined for those formulae𝜑 that can be obtained by erasing the type annotations
of awell-formed formula of TST. Such formulae are called stratified. To avoid the explicit dependence
on TST, we can equivalently characterise the stratified formulae as follows. A formula 𝜑 is said to be
stratified when there is a function 𝜎 from the set of variables to the nonnegative integers, in such a
way that for each subformula ‘𝑥 = 𝑦’ of 𝜑 we have 𝜎(‘𝑥’) = 𝜎(‘𝑦’), and for each subformula ‘𝑥 ∈ 𝑦’
we have 𝜎(‘𝑥’) + 1 = 𝜎(‘𝑦’).
Remarks 3.2.

(i) It is important to emphasise that while the axioms come from a many-sorted theory, NF is not
one; it is well-formed to ask if any set is a member of, or equal to, any other.

(ii) Russell’s paradox is avoided because the set {𝑥 ∣ 𝑥 ∉ 𝑥} cannot be formed; indeed, 𝑥 ∉ 𝑥 is an
unstratified formula. Note, however, that the set {𝑥 ∣ 𝑥 = 𝑥} is well-formed, and so we have a
universe set.

(iii) Specker showed in [9] that NF disproves the Axiom of Choice.

While our main result is that New Foundations is consistent, we attack the problem by means of an
indirection through a third theory.

3.3 Tangled type theory
Introduced by Holmes in [5], tangled type theory (TTT) is a multi-sorted first order theory based on
TST. This theory is parametrised by a limit ordinal 𝜆, the elements of which will index the sorts;
𝜔 works, but we prefer generality. As in TST, each variable 𝑥 has a type that it belongs to, denoted
𝗍𝗒𝗉𝖾(‘𝑥’). However, in TTT, this is not a positive integer, but an element of 𝜆.
The primitive predicates of this theory are equality and membership. An equality ‘𝑥 = 𝑦’ is a well-
formed formula when 𝗍𝗒𝗉𝖾(‘𝑥’) = 𝗍𝗒𝗉𝖾(‘𝑦’). A membership formula ‘𝑥 ∈ 𝑦’ is well-formed when
𝗍𝗒𝗉𝖾(‘𝑥’) < 𝗍𝗒𝗉𝖾(‘𝑦’).

4

The axioms of TTT are obtained by taking the axioms of TST and replacing all type indices in a con-
sistent way with elements of 𝜆. More precisely, for any order-embedding 𝑠 ∶ 𝜔 → 𝜆, we can convert
a well-formed formula 𝜑 of TST into a well-formed formula 𝜑𝑠 of TTT by replacing each type variable
𝛼 with 𝑠(𝛼).
Remarks 3.3.

(i) Membership across types in TTT behaves in some quite bizarre ways. Let 𝛼 ∈ 𝜆, and let 𝑥 be a
set of type 𝛼. For any 𝛽 < 𝛼, the extensionality axiom implies that 𝑥 is uniquely determined by
its type-𝛽 elements. However, it is simultaneously determined by its type-𝛾 elements for any
𝛾 < 𝛼. In this way, one extension of a set controls all of the other extensions.

(ii) The comprehension axiom allows a set to be built which has a specified extension in a single
type. The elements not of this type may be considered ‘controlled junk’.

We now present the following striking theorem.

Theorem 3.4 (Holmes). NF is consistent if and only if TTT is consistent. [5]

We will actually prove something slightly stronger.

Theorem 3.5. Let 𝑇 be a theory in the language of TST. Let 𝑇NF be the theory in the language of NF
given by erasing the type annotations of 𝑇. Let 𝑇TTT be the theory in the language of TTT given by
instantiating the sentences of 𝑇 at all possible combinations of type levels. Then 𝑇NF is consistent if
and only if 𝑇TTT is consistent.

Proof. Suppose that 𝑇NF has a model 𝑀. Let 𝑁 be the structure in the language of TTT where each
type 𝛼 is interpreted as𝑀, and where the membership relation is given by that on𝑀. It is easy to see
by induction that all sentences in 𝑇TTT hold in 𝑁, as required.
Now suppose that 𝑇TTT has some model𝑀. This proof that 𝑇NF is consistent proceeds in two stages.
In the first stage, we show that 𝑇 + Amb is consistent, where Amb is the ambiguity scheme

Amb ≡ {𝜑 ↔ 𝜑+ ∣ 𝜑 is a sentence in the language of TST}

This result is due to Holmes in [5]. We will then use this to show that 𝑇NF is consistent, using a result
due to Specker in [10].

Suppose that 𝑇 + Amb is not consistent. By compactness, there is some finite set of sentences Σ in
the language of TST such that 𝑇 + AmbΣ is inconsistent, where

AmbΣ ≡ {𝜑 ↔ 𝜑+ ∣ 𝜑 ∈ Σ}

Suppose that Σ uses only type indices 0,… , 𝑛 − 1. Let [𝜆]𝑛 be the collection of 𝑛-element subsets of
𝜆, and define a function 𝜎 ∶ [𝜆]𝑛 → 𝒫(Σ) as follows. If

𝐴 = {𝛼0,… , 𝛼𝑛−1} with 𝛼0 < ⋯ < 𝛼𝑛−1
then 𝜑 ∈ 𝜎(𝐴) if and only if the interpretation of 𝜑 in𝑀 at levels 𝛼0,… , 𝛼𝑛−1 is true. This defines a
partition of [𝜆]𝑛 into finitely many subsets. By Ramsey’s theorem, there is an infinite homogeneous
set 𝐻 ⊆ 𝜆 for this partition, that is, if 𝐴, 𝐵 ∈ [𝐻]𝑛, then 𝜎(𝐴) = 𝜎(𝐵). Let 𝛼0, 𝛼1,… be an increasing
sequence in 𝐻, and define a structure 𝑁 in the language of TST by interpreting type 𝑖 as𝑀𝛼𝑖 . Then,
𝑁 models 𝑇 + AmbΣ as required.

Now, we show that the consistency of 𝑇 +Amb implies that of 𝑇NF. This relies on a lemma of Specker
in [10]. An endomorphism of a one-sorted language is an operation (−)∗ on the function and relation

5

symbols, mapping them to terms (respectively formulas) with the same free variables. This extends
in a natural way to formulas in the language.

We can reformalise 𝑇 into a theory 𝑇 ′ over a one-sorted language by adding a unary relation symbol
𝑇𝑛 for each type index 𝑛, and recursively replacing each instance of ∃𝑥𝑛. 𝜑 with ∃𝑥. 𝑇𝑛(𝑥) ∧ 𝜑. This
language has an endomorphism (−)+ which maps 𝑇𝑛 to 𝑇𝑛+1.
Specker’s lemma can be phrased in the following way.

Lemma 3.6. Let𝑈 be a complete theory in a one-sorted language 𝐿with endomorphism (−)∗. Then
if

𝑈 + {𝜑 ↔ 𝜑⋆ ∣ 𝜑 is an 𝐿-sentence}
is consistent, then there is a model 𝑀 of 𝑈 that admits a function 𝑓 ∶ 𝑀 → 𝑀 such that for every
relation symbol 𝑅 of 𝐿,

𝑀 ⊨ 𝑅(𝑥1,… , 𝑥𝑚) if and only if𝑀 ⊨ 𝑅(𝑓(𝑥1),… , 𝑓(𝑥𝑚))

In our case, 𝑇 +Amb is consistent, so the corresponding one-sorted theory as required for the lemma
is consistent (and has a complete extension). This requires choosing an interpretation of the mem-
bership relation for pairs of type indices that do not differ by one, but this does not interfere with
anything that we need (for instance, the relation can always be interpreted as false). This yields a
model of 𝑇 ′ with a type-raising function 𝑓. This naturally gives rise to a model of 𝑇 in the language
of TST in which all type levels are isomorphic. Therefore, the carrier set of each type level of this
model provides a model of 𝑇NF as required.

Thus, our task of proving NF consistent is reduced to the task of proving TTT consistent. We will
do this by exhibiting an explicit model (albeit one that requires a great deal of Choice to construct).
As TTT has types indexed by a limit ordinal, and sets can only contain sets of lower type, we can
construct a model by recursion over 𝜆. In particular, a model of TTT is a well-founded structure. This
was not an option with NF directly, as the universe set {𝑥 ∣ 𝑥 = 𝑥} would necessarily be constructed
before many of its elements.

3.4 Finitely axiomatising tangled type theory
Hailperin showed in [4] that the comprehension scheme of NF is equivalent to a finite conjunction
of its instances. These axioms are all stratified (as is extensionality), so NF is equivalent to a theory
of the form 𝑇NF where 𝑇 is a particular finite theory in the language of TST. Then, by theorem 3.5,
the consistency of NF can be established by witnessing a model of 𝑇TTT. The same theorem shows
that any model of 𝑇TTT is a model of TTT, by executing Hailperin’s proof in the language of NF and
transporting the result back to the language of TTT.

We will exhibit one such theory 𝑇 here, with a list of twelve axioms. We have formally verified the
consistency of𝑇TTT, and the relevant Lean proof for each axiom is linked. Our choice of axioms for the
comprehension scheme are inspired by those used in the Metamath implementation of Hailperin’s
algorithm in [3]. In the following table, the notation ⟨𝑎, 𝑏⟩ denotes the Kuratowski pair {{𝑎}, {𝑎, 𝑏}}.
The first column is Hailperin’s name for the axiom, and the second is (usually) the name from [3].

6

− extensionality ∃∀ ∀𝑥1. ∀𝑦1. (∀𝑧0. 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦
P1(a) intersection ∃∀ ∀𝑥1𝑦1. ∃𝑧1. ∀𝑤0. 𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦)
P1(b) complement ∃∀ ∀𝑥1. ∃𝑧1. ∀𝑤0. 𝑤 ∈ 𝑧 ↔ 𝑤 ∉ 𝑥
P2 singleton image ∃∀ ∀𝑥3. ∃𝑦4. ∀𝑧0𝑤0. ⟨{𝑧}, {𝑤}⟩ ∈ 𝑦 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝑥
− singleton ∃∀ ∀𝑥0. ∃𝑦1. ∀𝑧0. 𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥
P3 insertion two ∃∀ ∀𝑥3. ∃𝑦5. ∀𝑧0𝑤0𝑡0. ⟨{{𝑧}}, ⟨𝑤, 𝑡⟩⟩ ∈ 𝑦 ↔ ⟨𝑧, 𝑡⟩ ∈ 𝑥
P4 insertion three ∃∀ ∀𝑥3. ∃𝑦5. ∀𝑧0𝑤0𝑡0. ⟨{{𝑧}}, ⟨𝑤, 𝑡⟩⟩ ∈ 𝑦 ↔ ⟨𝑧,𝑤⟩ ∈ 𝑥
P5 cross product ∃∀ ∀𝑥1. ∃𝑦3. ∀𝑧2. 𝑧 ∈ 𝑦 ↔ ∃𝑤0𝑡0. 𝑧 = ⟨𝑤, 𝑡⟩ ∧ 𝑡 ∈ 𝑥
P6 type lowering ∃∀ ∀𝑥4. ∃𝑦1. ∀𝑧0. 𝑧 ∈ 𝑦 ↔ ∀𝑤1. ⟨𝑤, {𝑧}⟩ ∈ 𝑥
P7 converse ∃∀ ∀𝑥2. ∃𝑦2. ∀𝑧0𝑤0. ⟨𝑧, 𝑤⟩ ∈ 𝑦 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥
P8 cardinal one ∃∀ ∃𝑥2. ∀𝑦1. 𝑦 ∈ 𝑥 ↔ ∃𝑧0. ∀𝑤.𝑤 ∈ 𝑦 ↔ 𝑤 = 𝑧
P9 subset ∃∀ ∃𝑥3. ∀𝑦1𝑧1. ⟨𝑦, 𝑧⟩ ∈ 𝑥 ↔ ∀𝑤0. 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧

Remark 3.7. Axioms P1–P9 except for P6 are predicative: they stipulate the existence of a set with
type at least that of all of the parameters. It is relatively straightforward to prove the consistency of
predicative TTT, and we will see later that the proof of P6 in our model takes a different form to the
proofs of the other axioms.

4 The supertype structure
We will now begin our exposition of the proof of the consistency of tangled type theory. This section
is based on the BaseType and Structural directories in the formalisation.

4.1 Model parameters
As described in §3.3, the types of a given model of tangled type theory are indexed by a limit ordinal
𝜆.
Definition 4.1. ∃∀ A collection ofmodel parameters consists of types 𝜆, 𝜅, 𝜇 satisfying the following
requirements.

(i) 𝜆, 𝜅, 𝜇 have well-orderings. The order type of 𝜆 is a limit ordinal. The order types of 𝜅 and 𝜇 are
initial ordinals.1

(ii) The cardinalities of 𝜆, 𝜅, 𝜇 satisfy

ℵ0 ≤ |𝜆| < |𝜅| < |𝜇|

(iii) |𝜅| is a regular cardinal. |𝜇| is a strong limit cardinal, and 𝜇 has cofinality at least |𝜅|.
Definition 4.2. ∃∀ Sets smaller than size 𝜅 are called small.
Remarks 4.3.

(i) ∃∀ 𝜅 has an additive monoid structure given from its well-ordered structure as follows. Write
𝑓 ∶ 𝜅 → Ord for the function that maps each inhabitant 𝑖 of 𝜅 to the order type of {𝑗 ∣ 𝑗 < 𝑖}.
Then 𝑓 is an injection with image equal to the order type of 𝜅. We may now define

𝑖 + 𝑗 = 𝑓−1(𝑓(𝑖) + 𝑓(𝑗))
1Set theorists would simply require that 𝜅, 𝜇 be cardinals. In our type theory, a cardinal is an equivalence class of types in

a given universe that biject.

7

https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.ext
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.inter
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.compl
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.singletonImage
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.mem_singleton_iff
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.insertion2
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.insertion3
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.cross
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.typeLower
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.converse
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.cardinalOne
https://leanprover-community.github.io/con-nf/doc/ConNF/Model/Result.html#ConNF.subset
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/Params.html#ConNF.Params
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/Small.html#ConNF.Small
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/Params.html#ConNF.Params.κ_addMonoid

We cannot define this operation constructively, so we directly include it in the model parame-
ters in the Lean formalisation and prove its existence separately.

(ii) ∃∀We remark that these constraints are satisfiable; 𝜆 = ℵ0, 𝜅 = ℵ1, 𝜇 = ℶ𝜔1 suffice.

4.2 Atoms, litters, and near-litters
As described in §1, our model has an additional level of objects below type zero. To index the levels
of the model, together with this new level, we make the following definition.

Definition 4.4. ∃∀ A type index is an element of 𝜆 or a distinguished symbol ⊥. We impose an order
on type indices by setting ⊥ < 𝛼 for all 𝛼 ∈ 𝜆. The collection of type indices is denoted 𝜆⊥.
Elements of 𝜆may be called proper type indices.
Our base type is a set of atoms, organised into litters. The litters index as large amorphous sets of
atoms that can be used as ‘junk’ data.

Definition 4.5. ∃∀A litter is a triple 𝐿 = (𝜈, 𝛽, 𝛾)where 𝜈 ∈ 𝜇, 𝛽 is a type index, and 𝛾 ≠ 𝛽 is a proper
type index.2

This somewhat arcane definition will be used later when defining the fuzz map. A litter 𝐿 = (𝜈, 𝛽, 𝛾)
encodes data coming from type 𝛽 and going into type 𝛾. Note that 𝛽 may be ⊥, but 𝛾 may not; this
corresponds to the fact that we never construct data in type ⊥ from data at higher levels. The first
component 𝜈 is an index allowing us to have 𝜇 distinct litters with the same source and target types.
Remark 4.6. ∃∀ There are precisely |𝜇| litters.
Definition 4.7. ∃∀ An atom is a pair 𝑎 = (𝐿, 𝑖) where 𝐿 is a litter and 𝑖 ∈ 𝜅. The associated litter of
an atom is its first projection 𝗉𝗋1(𝑎), written 𝑎∘ for brevity. The litter set 𝖫𝖲(𝐿) of a given litter 𝐿 is the
set of atoms whose associated litter is 𝐿; that is, 𝖫𝖲(𝐿) = {(𝐿, 𝑖) ∣ 𝑖 ∈ 𝜅}. The litter sets partition the
type of atoms into |𝜇| sets of 𝜅 atoms, and there are |𝜇| atoms in total.
Remark 4.8. Many of our constructions for symmetry arguments rely on having only a small set of
constraints. If our constraints take the form of atoms, the smallness assumption guarantees thatmost
of the atoms in a given litter set are unconstrained. Motivated by smallness concerns, we make the
following definition.

Definition 4.9. ∃∀ A near-litter is a pair 𝑁 = (𝐿, 𝑠) where 𝐿 is a litter and 𝑠 is a set of atoms with
small symmetric difference to the litter set of 𝐿. We say that the associated litter of 𝑁 is 𝑁∘ = 𝗉𝗋1(𝑁),
or that 𝑁 is near 𝐿. For brevity, we will frequently identify a near-litter with its underlying set.
Remarks 4.10.

(i) ∃∀ A set of atoms can be near at most one litter.

(ii) ∃∀ The litter set of any litter 𝐿 can be made into a near-litter: 𝖭𝖫(𝐿) = (𝐿, 𝖫𝖲(𝐿)).
(iii) ∃∀ Each (second projection of a) near-litter has size exactly 𝜅.
Lemma 4.11. ∃∀ There are precisely |𝜇| near-litters.

Proof. It suffices to show that if |𝛼| is a strong limit cardinal and 𝛼 is well-ordered with initial order
type, then 𝛼 has precisely |𝛼| bounded subsets. Indeed, this would imply that there are only |𝜇| small

2Readers of [6] will note that Holmes defines a litter as a particular set of atoms. We instead define litters to be names for
such sets, which will be called litter sets.

8

https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/Params.html#ConNF.minimalParams
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/Params.html#ConNF.TypeIndex
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/Litter.html#ConNF.Litter
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/Litter.html#ConNF.mk_litter
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/Atom.html#ConNF.Atom
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/NearLitter.html#ConNF.NearLitter
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/NearLitter.html#ConNF.NearLitter.isNearLitter
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/NearLitter.html#ConNF.Litter.toNearLitter
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/NearLitter.html#ConNF.mk_nearLitter''
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/NearLitter.html#ConNF.mk_nearLitter

sets of atoms, since the cofinality of 𝜇 is at least |𝜅|, from which it follows that there are precisely |𝜇|
near-litters near a given litter, and so precisely |𝜇| in total. Note that

|{𝑠 ⊆ 𝛼 ∣ 𝑠 bounded}| =
||||⋃𝑖∶𝛼

𝒫({𝑗 ∣ 𝑗 < 𝑖})
||||
≤ |𝛼| ⋅ 𝗌𝗎𝗉

𝑖∶𝛼
|𝒫({𝑗 ∣ 𝑗 < 𝑖})|

As 𝛼 has initial order type, {𝑗 ∣ 𝑗 < 𝑖} has cardinality strictly less than |𝛼|. As |𝛼| is a strong limit, its
power set also has cardinality strictly smaller than |𝛼|, so the supremum is bounded above by |𝛼|.

We can nowdefine the allowable permutations of type⊥, althoughwewill give themadifferent name
for now; they will be precisely those permutations of atoms that respect the structure of near-litters.

Definition 4.12. ∃∀ A base permutation 𝜋 consists of a permutation of atoms 𝜋𝐴 and a permutation
of litters 𝜋𝐿 such that if 𝑁 = (𝐿, 𝑠) is a near-litter, then

(𝜋𝐿(𝐿), 𝜋𝐴[𝑠])

is also a near-litter. The type of base permutations will occasionally be denoted Base.

We will often simply use 𝜋 to denote the permutations 𝜋𝐴, 𝜋𝐿 of atoms and litters. Such a base
permutation 𝜋 induces a permutation of near-litters 𝜋𝑁 , given by

𝜋𝑁(𝐿, 𝑠) = (𝜋𝐿(𝐿), 𝜋𝐴[𝑠])

We will also call this permutation 𝜋.
Remarks 4.13.

(i) ∃∀ A base permutation is determined by its action on atoms.

(ii) ∃∀ Base permutations form a group.

Implementation details 4.14.

(i) Lean’s type theory does not allow us to directly write 𝜋 for the two different functions 𝜋𝐴, 𝜋𝐿.
We instead use the syntax 𝜋•𝑎, 𝜋•𝐿, which is the mathlib notation for group actions. In these
expressions, the head symbol is •, not 𝜋 itself. This allows Lean to trigger typeclass resolution
and dynamically choose the interpretation of • based on the type of the right-hand side.

(ii) We use an alternative formalisation of the pointwise image𝜋𝐴[𝑠] under a permutation; instead,
we write ((𝜋𝐴)−1)−1(𝑠). This has the advantage that the bi-implication

𝑎 ∈ ((𝜋𝐴)−1)−1(𝑠) ↔ (𝜋𝐴)−1(𝑎) ∈ 𝑠

is a definitional equality.

4.3 Higher type structure
A type-𝛼 object has elements of any type 𝛽 < 𝛼, which have elements of any type 𝛾 < 𝛽, and so on;
we must eventually reach ⊥ in a finite number of steps by well-foundedness. We will now make a
definition to deal with sequences of type indices obtained in this way.

Definition 4.15. ∃∀ A path of type indices 𝛼 ⇝ 𝜀 is a finite sequence of type indices

𝛼 > 𝛽 > 𝛾 > ⋯ > 𝜀

9

https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/BasePerm.html#ConNF.BasePerm
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/BasePerm.html#ConNF.BasePerm.ext
https://leanprover-community.github.io/con-nf/doc/ConNF/BaseType/BasePerm.html#ConNF.BasePerm.instGroupBasePerm
https://leanprover-community.github.io/con-nf/doc/ConNF/Structural/Index.html#ConNF.instQuiverTypeIndex

If 𝛼 is a type index, an 𝛼-extended type index is a path 𝛼 ⇝ ⊥. If 𝐴 is a path 𝛼 ⇝ 𝛽 and 𝐵 is a path
𝛽 ⇝ 𝛾, their composition 𝐴 ⬝ 𝐵 is a path 𝛼 ⇝ 𝛾 obtained by concatenation of the sequences but
removing the duplicated index 𝛽.
Implementation detail 4.16. We define a quiver structure on 𝜆⊥ by setting the type of morphisms
𝛼 → 𝛽 to be the type 𝛼 > 𝛽; that is, there is a single morphism 𝛼 → 𝛽 whenever 𝛼 > 𝛽. Paths of
type indices are then defined as paths in this quiver. In mathlib, paths in quivers are defined as an
inductive data type, with a cons operation on the end. That is, it is easy to reason about paths of the
form 𝛼 ⇝ 𝛽 > 𝛾, but difficult to reason about paths of the form 𝛼 > 𝛽 ⇝ 𝛾. In our formalisation,
we frequently append segments to the end of paths, but infrequently prepend to the start of paths.
This gives rise to technical hurdles whenever analysing the start of paths is required. An alternative
implementation is to encode paths as finite sets, as is done in [6], but this representation has worse
definitional equalities.

Remark 4.17. ∃∀ For any 𝛼 ∈ 𝜆⊥, the set of 𝛼-extended type indices has size at most |𝜆|.
In our model, the iterated extensions of objects of type 𝛼 are indexed by the 𝛼-extended type indices.
We frequently want to analyse or modify an object ‘along paths’: to easily package such data, we
make the following definition.

Definition 4.18. ∃∀ Let 𝜏 be a type and 𝛼 be a type index. Then the type of 𝛼-trees of 𝜏 is

Tree(𝜏)𝛼 = (𝛼 ⇝ ⊥) → 𝜏

That is, an 𝛼-tree of 𝜏 assigns an inhabitant of 𝜏 to each 𝛼-extended type index.
Trees made out of base permutations are called structural permutations.

Definition 4.19. ∃∀ An 𝛼-structural permutation is an 𝛼-tree of base permutations. We write

Str𝛼 = Tree(Base)𝛼

An 𝛼-structural permutation 𝜋 assigns a base permutation to each 𝛼-extended index.
Remarks 4.20.

(i) ∃∀ Trees on 𝜏 are given the group structure of 𝜏 by acting ‘along paths’: for 𝛼-trees 𝑎, 𝑏, we
define (𝑎𝑏)𝐴 = 𝑎𝐴𝑏𝐴.

(ii) ∃∀We can extend the notation 𝑎𝐴 to paths 𝐴 ∶ 𝛼 ⇝ 𝛽 where 𝛽 is arbitrary. Given such a path
𝐴 ∶ 𝛼 ⇝ 𝛽, we obtain a derivative group homomorphism

Tree(𝜏)𝛼 → Tree(𝜏)𝛽

written 𝑎 ↦ 𝑎𝐴 and given by
(𝑎𝐴)𝐵 = 𝑎𝐴⬝𝐵

where 𝐴 ⬝ 𝐵 is the concatenation of the paths 𝐴, 𝐵. This operates similarly to a restriction map.
(iii) ∃∀ There is a canonical group isomorphism Tree(𝜏)⊥ ≅ 𝜏, as there is precisely one path⊥ ⇝ ⊥.

In particular, we may identify ⊥-structural permutations with base permutations.
At proper type indices 𝛼, we will define the set of 𝛼-allowable permutations to be a certain subgroup
of the group of 𝛼-structural permutations. These permutations will be chosen in such a way that
gives an action on the set of model elements at level 𝛼. Not every structural permutation will have
such an action.

10

https://leanprover-community.github.io/con-nf/doc/ConNF/Structural/Index.html#ConNF.mk_extendedIndex
https://leanprover-community.github.io/con-nf/doc/ConNF/Structural/Tree.html#ConNF.Tree
https://leanprover-community.github.io/con-nf/doc/ConNF/Structural/StructPerm.html#ConNF.StructPerm
https://leanprover-community.github.io/con-nf/doc/ConNF/Structural/Tree.html#ConNF.Tree.group
https://leanprover-community.github.io/con-nf/doc/ConNF/Structural/Tree.html#ConNF.Tree.comp
https://leanprover-community.github.io/con-nf/doc/ConNF/Structural/Tree.html#ConNF.Tree.toBotIso

References
[1] Mario Carneiro.The Type Theory of Lean. 2019. url: https://github.com/digama0/lean-

type-theory/releases.
[2] The mathlib Community. “The Lean Mathematical Library”. In: Proceedings of the 9th ACM

SIGPLAN International Conference on Certified Programs and Proofs. CPP 2020. New Orleans,
LA,USA:Association forComputingMachinery, 2020, pp. 367–381. isbn: 9781450370974. doi:
10.1145/3372885.3373824. url: https://github.com/leanprover- community/
mathlib4.

[3] Scott Fenton. New Foundations set theory developed in metamath. 2015. url: https://us.
metamath.org/nfeuni/mmnf.html.

[4] Theodore Hailperin. “A set of axioms for logic”. In: Journal of Symbolic Logic 9.1 (1944), pp. 1–
19. doi: 10.2307/2267307.

[5] M. Randall Holmes. “The Equivalence of NF-Style Set Theories with “Tangled” Theories; The
Construction of ω-Models of Predicative NF (and more)”. In: The Journal of Symbolic Logic
60.1 (1995), pp. 178–190. issn: 00224812. url: http://www.jstor.org/stable/2275515.

[6] M. Randall Holmes and Sky Wilshaw. NF is Consistent. 2024. arXiv: 1503.01406 [math.LO].
[7] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and Programming

Language”. In: Automated Deduction – CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12–15, 2021, Proceedings. Berlin, Heidelberg: Springer-Verlag,
2021, pp. 625–635. isbn: 978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5_37. url:
https://doi.org/10.1007/978-3-030-79876-5_37.

[8] W. V. Quine. “New Foundations for Mathematical Logic”. In:AmericanMathematical Monthly
44 (1937), pp. 70–80. url: https://api.semanticscholar.org/CorpusID:123927264.

[9] Ernst P. Specker. “The Axiom of Choice in Quine’s New Foundations for Mathematical Logic”.
In: Proceedings of the National Academy of Sciences of the United States of America 39.9 (1953),
pp. 972–975. issn: 00278424. url: http://www.jstor.org/stable/88561.

[10] Ernst P. Specker. “Typical Ambiguity”. In: Logic, Methodology and Philosophy of Science. Ed. by
Ernst Nagel. Stanford University Press, 1962, pp. 116–123.

[11] SkyWilshaw, Yaël Dillies, Peter LeFanu Lumsdaine, et al.NewFoundations is consistent. 2022–
2024. url: https://leanprover-community.github.io/con-nf/.

11

https://github.com/digama0/lean-type-theory/releases
https://github.com/digama0/lean-type-theory/releases
https://doi.org/10.1145/3372885.3373824
https://github.com/leanprover-community/mathlib4
https://github.com/leanprover-community/mathlib4
https://us.metamath.org/nfeuni/mmnf.html
https://us.metamath.org/nfeuni/mmnf.html
https://doi.org/10.2307/2267307
http://www.jstor.org/stable/2275515
https://arxiv.org/abs/1503.01406
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://api.semanticscholar.org/CorpusID:123927264
http://www.jstor.org/stable/88561
https://leanprover-community.github.io/con-nf/

	Overview
	The Lean interactive theorem prover
	Lean and its type theory
	Trusting Lean

	The theories at issue
	The simple theory of types
	New Foundations
	Tangled type theory
	Finitely axiomatising tangled type theory

	The supertype structure
	Model parameters
	Atoms, litters, and near-litters
	Higher type structure

